92 research outputs found

    A dendroclimatological study of long-term growth patterns of yellow-cedar trees in Southeast Alaska

    Get PDF
    Thesis (M.S.) University of Alaska Fairbanks, 2006Yellow-cedar is a very long-lived, commercially important tree species found along the coasts of Southeast Alaska and also in small populations in Prince William Sound. However, this is the first study of the tree's annual ring growth patterns in the region. Tree cores were collected from over 400 trees across a large latitudinal gradient and cross-dated using standard dendrochronological techniques. Radial tree-ring growth was measured and compared to reconstructed weather station data to gain a better understanding of the climatic conditions favoring yellow-cedar growth. We found consistent, significant positive correlations between ring widths and mean monthly temperatures in August, previous January, and previous December, and negative relationships with May and December precipitation. Climate indices we created using these variables explain approximately 25% of growth variability in five distinct yellow-cedar populations. Long-term growth patterns in tree populations going back three centuries were similar across all sites, specifically the sustained below mean growth during the 1800s. Yellow-cedar at the northern limits of its distribution shows a common growth signal which may indicate the influence of larger pressure anomalies, such as EI Nino-Southern Oscillation (ENSO), on the climate factors affecting the trees

    HOW VIRGINIA DAIRYMEN CAN MANAGE PRICE RISK

    Get PDF
    Livestock Production/Industries,

    Photographic Guide to Pinyon and Juniper Tree Maturity Classes

    Get PDF
    Two series of color photographs illustrate the variation in growth habitat of five maturity classes of pinyon pine (Pinus edulis Engelm.) and Utah juniper trees (Juniperus osteosperma (Torr.) Little) froma variety of sites across Northern Arizona. Information provided with each photograph includes a cross-dated age and measures of height, crown radius, and multiple diameters. Three site quality levels alow the user to calibrate the guide to their site and account for miscrosite variation. A pictorial summary of bark characteristics is presented for both species. This photographic guide provides an efficient way to estimate the age of pinyon pine and juniper trees in the field for ecological restoration, as well as general research ecology, in pinyon-juniper ecosystems throughout Northern Arizona and nearly regions

    Liquid–Liquid Equilibria of Ionic Liquids–Water–Acetic Acid Mixtures

    Get PDF
    International audienceThe liquid–liquid equilibria of ionic liquid-based systems with water and/or acetic acid have been studied at 293.15 K and atmospheric pressure. One hydrophilic ionic liquid and a series of hydrophobic ionic liquids were investigated in order to examine their effect on the separation of water and acetic acid mixtures. The ionic liquids studied were [P666,14]Cl, [P666,14][NTf2], [C4mmim][NTf2], [Cnmim][NTf2] (n = 2, 4, 6, 8, or 10), [C4mpyrr][NTf2], [N1114][NTf2], and [C2mim][EtSO4]. [C2mim][EtSO4] is totally miscible with water and acetic acid in all compositions. Comparing [P666,14]Cl with [P666,14][NTf2], the former showed higher extraction selectivities; however, due to the larger viscosity of [P666,14]Cl, the [NTf2]− based ionic liquids offer a better solvent choice for the liquid extraction processes. As expected, as the solubility of water decreases with increasing the chain length of ionic liquids, this in turn leads to [C10mim][NTf2] showing greater acetic efficiency than [C2mim][NTf2] for the separation of water and acetic acid. The experimental data obtained for ternary systems containing the [C4mmim][NTf2] demonstrated that the modification of the C(2) position on the imidazolium ring does not significantly affect the selectivity compared with [C4mim][NTf2]. Tetraalkyl ammonium and N-alkyl pyrrolidinium based ionic liquids were also studied with the [NTf2]− anion with the results for the system containing the [C4mpyrr][NTf2] demonstrating a higher selectivity for the separation of water and acetic acid than the other [NTf2]− based systems studied. All experimental data were then correlated using the UNIQUAC model within an accuracy close to 1.6%. Finally, the ionic liquids were also compared with standard molecular extraction solvent, for example, methyl tert-butyl ether and methyl isobutyl ketone. The organic solvents showed an advantage over the [Cnmim][NTf2]-based ionic liquids but only over a narrow composition range. In all ionic liquid systems, the selectivity remains high at low acetic acid concentration compared with that found in the organic solvents, which is important for practical operation and demonstrates the advantages of using an ionic liquid for the extraction

    Performance measurement : challenges for tomorrow

    Get PDF
    This paper demonstrates that the context within which performance measurement is used is changing. The key questions posed are: Is performance measurement ready for the emerging context? What are the gaps in our knowledge? and Which lines of enquiry do we need to pursue? A literature synthesis conducted by a team of multidisciplinary researchers charts the evolution of the performance-measurement literature and identifies that the literature largely follows the emerging business and global trends. The ensuing discussion introduces the currently emerging and predicted future trends and explores how current knowledge on performance measurement may deal with the emerging context. This results in identification of specific challenges for performance measurement within a holistic systems-based framework. The principle limitation of the paper is that it covers a broad literature base without in-depth analysis of a particular aspect of performance measurement. However, this weakness is also the strength of the paper. What is perhaps most significant is that there is a need for rethinking how we research the field of performance measurement by taking a holistic systems-based approach, recognizing the integrated and concurrent nature of challenges that the practitioners, and consequently the field, face

    Default-Mode-Like Network Activation in Awake Rodents

    Get PDF
    During wakefulness and in absence of performing tasks or sensory processing, the default-mode network (DMN), an intrinsic central nervous system (CNS) network, is in an active state. Non-human primate and human CNS imaging studies have identified the DMN in these two species. Clinical imaging studies have shown that the pattern of activity within the DMN is often modulated in various disease states (e.g., Alzheimer's, schizophrenia or chronic pain). However, whether the DMN exists in awake rodents has not been characterized. The current data provides evidence that awake rodents also possess ‘DMN-like’ functional connectivity, but only subsequent to habituation to what is initially a novel magnetic resonance imaging (MRI) environment as well as physical restraint. Specifically, the habituation process spanned across four separate scanning sessions (Day 2, 4, 6 and 8). At Day 8, significant (p<0.05) functional connectivity was observed amongst structures such as the anterior cingulate (seed region), retrosplenial, parietal, and hippocampal cortices. Prior to habituation (Day 2), functional connectivity was only detected (p<0.05) amongst CNS structures known to mediate anxiety (i.e., anterior cingulate (seed region), posterior hypothalamic area, amygdala and parabracial nucleus). In relating functional connectivity between cingulate-default-mode and cingulate-anxiety structures across Days 2-8, a significant inverse relationship (r = −0.65, p = 0.0004) was observed between these two functional interactions such that increased cingulate-DMN connectivity corresponded to decreased cingulate anxiety network connectivity. This investigation demonstrates that the cingulate is an important component of both the rodent DMN-like and anxiety networks

    Accelerating ocean species discovery and laying the foundations for the future of marine biodiversity research and monitoring

    Get PDF
    This is the final version. Available from Frontiers Media via the DOI in this record. Ocean Census is a new Large-Scale Strategic Science Mission aimed at accelerating the discovery and description of marine species. This mission addresses the knowledge gap of the diversity and distribution of marine life whereby of an estimated 1 million to 2 million species of marine life between 75% to 90% remain undescribed to date. Without improved knowledge of marine biodiversity, tackling the decline and eventual extinction of many marine species will not be possible. The marine biota has evolved over 4 billion years and includes many branches of the tree of life that do not exist on land or in freshwater. Understanding what is in the ocean and where it lives is fundamental science, which is required to understand how the ocean works, the direct and indirect benefits it provides to society and how human impacts can be reduced and managed to ensure marine ecosystems remain healthy. We describe a strategy to accelerate the rate of ocean species discovery by: 1) employing consistent standards for digitisation of species data to broaden access to biodiversity knowledge and enabling cybertaxonomy; 2) establishing new working practices and adopting advanced technologies to accelerate taxonomy; 3) building the capacity of stakeholders to undertake taxonomic and biodiversity research and capacity development, especially targeted at low- and middle-income countries (LMICs) so they can better assess and manage life in their waters and contribute to global biodiversity knowledge; and 4) increasing observational coverage on dedicated expeditions. Ocean Census, is conceived as a global open network of scientists anchored by Biodiversity Centres in developed countries and LMICs. Through a collaborative approach, including co-production of science with LMICs, and by working with funding partners, Ocean Census will focus and grow current efforts to discover ocean life globally, and permanently transform our ability to document, describe and safeguard marine species.Nippon Foundatio

    The genetic architecture of the human cerebral cortex

    Get PDF
    The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder

    Quantitative 18F-AV1451 Brain Tau PET Imaging in Cognitively Normal Older Adults, Mild Cognitive Impairment, and Alzheimer's Disease Patients

    Get PDF
    Recent developments of tau Positron Emission Tomography (PET) allows assessment of regional neurofibrillary tangles (NFTs) deposition in human brain. Among the tau PET molecular probes, 18F-AV1451 is characterized by high selectivity for pathologic tau aggregates over amyloid plaques, limited non-specific binding in white and gray matter, and confined off-target binding. The objectives of the study are (1) to quantitatively characterize regional brain tau deposition measured by 18F-AV1451 PET in cognitively normal older adults (CN), mild cognitive impairment (MCI), and AD participants; (2) to evaluate the correlations between cerebrospinal fluid (CSF) biomarkers or Mini-Mental State Examination (MMSE) and 18F-AV1451 PET standardized uptake value ratio (SUVR); and (3) to evaluate the partial volume effects on 18F-AV1451 brain uptake.Methods: The study included total 115 participants (CN = 49, MCI = 58, and AD = 8) from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Preprocessed 18F-AV1451 PET images, structural MRIs, and demographic and clinical assessments were downloaded from the ADNI database. A reblurred Van Cittertiteration method was used for voxelwise partial volume correction (PVC) on PET images. Structural MRIs were used for PET spatial normalization and region of interest (ROI) definition in standard space. The parametric images of 18F-AV1451 SUVR relative to cerebellum were calculated. The ROI SUVR measurements from PVC and non-PVC SUVR images were compared. The correlation between ROI 18F-AV1451 SUVR and the measurements of MMSE, CSF total tau (t-tau), and phosphorylated tau (p-tau) were also assessed.Results:18F-AV1451 prominently specific binding was found in the amygdala, entorhinal cortex, parahippocampus, fusiform, posterior cingulate, temporal, parietal, and frontal brain regions. Most regional SUVRs showed significantly higher uptake of 18F-AV1451 in AD than MCI and CN participants. SUVRs of small regions like amygdala, entorhinal cortex and parahippocampus were statistically improved by PVC in all groups (p &lt; 0.01). Although there was an increasing tendency of 18F-AV-1451 SUVRs in MCI group compared with CN group, no significant difference of 18F-AV1451 deposition was found between CN and MCI brains with or without PVC (p &gt; 0.05). Declined MMSE score was observed with increasing 18F-AV1451 binding in amygdala, entorhinal cortex, parahippocampus, and fusiform. CSF p-tau was positively correlated with 18F-AV1451 deposition. PVC improved the results of 18F-AV-1451 tau deposition and correlation studies in small brain regions.Conclusion: The typical deposition of 18F-AV1451 tau PET imaging in AD brain was found in amygdala, entorhinal cortex, fusiform and parahippocampus, and these regions were strongly associated with cognitive impairment and CSF biomarkers. Although more deposition was observed in MCI group, the 18F-AV-1451 PET imaging could not differentiate the MCI patients from CN population. More tau deposition related to decreased MMSE score and increased level of CSF p-tau, especially in ROIs of amygdala, entorhinal cortex and parahippocampus. PVC did improve the results of tau deposition and correlation studies in small brain regions and suggest to be routinely used in 18F-AV1451 tau PET quantification
    corecore